Accurately and Maximally Prefetching Spatial Data Access Patterns with Bingo

Mohammad Bakhshalipour Mehran Shakerinava Pejman Lotfi-Kamran Hamid Sarbazi-Azad

Presenter: Farid Samandi (Stony Brook University)

Institute for Research in Fundamental Sciences

Spatial Data Correlation

Access patterns repeat over memory pages

☐ Because data objects have fixed and regular layout

State-of-the-art

Per-Page History Prefetchers

- ☐ Record a <u>footprint</u> for each page
- ☐ Correlate the recorded footprint with one event
 - The event is usually extracted from the trigger access

One event is not accurate enough

Our proposal: Bingo

Correlates each footprint with multiple events

☐ Employ TAGE-like history organization

Trigger								
I	Event	Footp.	l I	Event	Footp.		Event	Footp.
4	E1	P1		E1, E2	P1	 	E1, E2, E3	P1
	E2	P2		E2, E3	P2		E2, E3, E4	P2
	:	:		:	:		:	:

Significant storage overhead because of redundancies

☐ Consolidate metadata information

Look up with a different event

Outline

- ☐ Introduction
- **□** Motivations
- ☐ Bingo
- ☐ Results
- ☐ Conclusion

Big-Data Applications

Large datasets

- ☐ Dwarf on-chip caches
- ☐ Long-latency memory accesses

Performance implication

> 50% of execution time waiting for memory
[Ferdman, ASPLOS 2012]

Data Prefetching

Hardware Data Prefetching

Predict future memory accesses and fetch them proactively

- ☐ Temporal prefetching
- ☐ Spatial prefetching
 - ✓ Low storage overhead
 - ✓ Overcome unseen cache misses

Spatial prefetching

- ☐ Records and replays data accesses in a per-page basis manner
- Works since applications use data objects with a regular and fixed layout
 - ✓ Accesses reappear while traversing data structures

What is the Best Event?

■ Accuracy
■ Match Probability

No single event has all good characteristics

→ Use **multiple** events

TAGE-Like Predictor

A TAGE-like predictor can bring the benefits of both worlds

- ☐ Correlate footprints to both long and short events
- ☐ Upon prediction: start from the longest event
 - ✓ In case of match \rightarrow Use event for prediction
 - × Otherwise → Check the next-longest event

Trigger			•			—		
	Event	Footp.		Event	Footp.		Event	Footp.
\	E1	P1	 	E1, E2	P1	\	E1, E2, E3	P1
	E2	P2		E2, E3	P2		E2, E3, E4	P2
	:	:		:	:		:	:

The Shortest History Table Low Accuracy

High Probability

The Longest History Table
High Accuracy
Low Probability

How Many Events?

Coverage Accuracy

A Naïve Implementation

Use multiple history tables

☐ Like all prior TAGE-like approaches

Long History Table

Event	Footprint
PC ₁ , Address ₁	100010
PC ₂ , Address ₂	011011
:	• •

Short History Table

Event	Footprint
PC ₁ , Offset ₁	111001
PC ₂ , Offset ₂	011011
••	•

Significant storage overhead due to redundancies

Bingo: Consolidate History Tables

Instead of having multiple history tables, employ only one history table but look it up multiple times each time with a different event

- ☐ Store footprint information paired with only the longest event
- ☐ But look up the history table with both long and short events
 Insight: Short events are carried in long events

Consolidation → Automatically eliminating redundancies

Bingo: Details

Performance

Bingo outperforms state-of-the-art data prefetcher by 4% on average across 146 workloads

Conclusions

Big-data applications

- ☐ Huge memory-resident datasets
- ☐ Frequent data stalls
- ☐ Data prefetching for improving both throughput and latency

Bingo

- ☐ Uses both long and short events for correlation prefetching
- Consolidates history tables for storage efficiency
- ☐ Improves system performance by 23% over the baseline and 4% over

prior best-performing data prefetcher

Thanks for your attention!

