Sangam: A Multi-component Core Cache Prefetcher

Mainak Chaudhuri, Nayan Deshmukh

Introduction

- The word 'Sangam' refers to a confluence of 3 rivers which corresponds to 3 core components in our prefetcher
- We achieve 40.3% speedup over no prefetching for 46 single core workloads
- For 4 core we achieve 19.5% speedup over no prefetching for 100 multiprogramed workloads (45 homo, 55 hetro)

Sangam

Sangam

Where?

Where?

- Where to place the prefetcher
- L1 allows for better learning whereas L2, L3 allows for more hardware resources

Where?

- Where to place the prefetcher
- L1 allows for better learning whereas L2, L3 allows for more hardware resources

Speedup at different levels of cache

Uses both control-flow and data-flow information to predict a sequence of accesses

IP	Last offset	Last d+1 deltas
•		
•		
•		
•		

IP Table

h(IP, Delta)	Next d deltas
•	
•	
•	

• Uses both control-flow and data-flow information to predict a sequence of accesses

IP Table

h(IP, Delta)	Next d deltas
•	

• Uses both control-flow and data-flow information to predict a sequence of accesses

IP Table

Next d deltas

• Uses both control-flow and data-flow information to predict a sequence of accesses

IP Table

h(IP, Delta)	Next d deltas
· ·	

• Uses both control-flow and data-flow information to predict a sequence of accesses

IP Table

IP-Delta Table

h(IP, Delta)	Next d deltas
•	
· ·	

• Uses both control-flow and data-flow information to predict a sequence of accesses

IP Table

IP-Delta Table

h(IP, Delta)	Next d deltas
•	

IP Table

IP-Delta Table

h(IP, Delta)	Next d deltas

• Learning

h(IP, Delta)	Next d deltas

IP Table

IP-Delta Table

h(IP, Delta)	Next d deltas

IP Table

IP-Delta Table

h(IP, Delta)	Next d deltas

IP Table

IP-Delta Table

h(IP, Delta)	Next d deltas

IP Table

IP-Delta Table

h(IP, Delta)	Next d deltas

IP-Delta Table

h(IP, Delta)	Next d deltas

• Learning

IP Table

IP-Delta Table

h(IP, Delta)	Next d deltas

offset

IP-based stride prefetcher

- We use IP based stride predictor when IP-delta predictor can no longer offer predictions
- This covers both cases when either the entry is missing from IP-delta table or the sequence is below confidence threshold

IP-based stride prefetcher

- We use IP based stride predictor when IP-delta predictor can no longer offer predictions
- This covers both cases when either the entry is missing from IP-delta table or the sequence is below confidence threshold

We use the IP stride predictor when the last two deltas seen for IP are equal

- Maintaining coverage at the cost of accuracy leads to overall better performance
- Used when both IP-delta and IP stride prefetcher cannot offer prediction
- Feedback directed degree selection

Degree	1	2	 d
Hits	2	1	 0
Insertions	4	4	 4

- Maintaining coverage at the cost of accuracy leads to overall better performance
- Used when both IP-delta and IP stride prefetcher cannot offer prediction
- Feedback directed degree selection

Degree	1	2	 d
Hits	2	1	 0
Insertions	4	4	 4

- Maintaining coverage at the cost of accuracy leads to overall better performance
- Used when both IP-delta and IP stride prefetcher cannot offer prediction
- Feedback directed degree selection

Degree	1	2	 d
Hits	2	1	 0
Insertions	4	4	 4

- Maintaining coverage at the cost of accuracy leads to overall better performance
- Used when both IP-delta and IP stride prefetcher cannot offer prediction
- Feedback directed degree selection

Degree	1	2	 d
Hits	2	1	 0
Insertions	4	4	 4
- Maintaining coverage at the cost of accuracy leads to overall better performance
- Used when both IP-delta and IP stride prefetcher cannot offer prediction
- Feedback directed degree selection

Degree	1	2	 d
Hits	2	1	 0
Insertions	4	4	 4

- Maintaining coverage at the cost of accuracy leads to overall better performance
- Used when both IP-delta and IP stride prefetcher cannot offer prediction
- Feedback directed degree selection

Degree	1	2	 d
Hits	2	1	 0
Insertions	4	4	 4

- Maintaining coverage at the cost of accuracy leads to overall better performance
- Used when both IP-delta and IP stride prefetcher cannot offer prediction
- Feedback directed degree selection

Degree	1	2	 d
Hits	2	1	 0
Insertions	5	4	 4

- Maintaining coverage at the cost of accuracy leads to overall better performance
- Used when both IP-delta and IP stride prefetcher cannot offer prediction
- Feedback directed degree selection

Degree	1	2	 d
Hits	2	1	 0
Insertions	5	4	 4

- Maintaining coverage at the cost of accuracy leads to overall better performance
- Used when both IP-delta and IP stride prefetcher cannot offer prediction
- Feedback directed degree selection

Degree	1	2	 d
Hits	2	1	 0
Insertions	5	4	 4

- Maintaining coverage at the cost of accuracy leads to overall better performance
- Used when both IP-delta and IP stride prefetcher cannot offer prediction
- Feedback directed degree selection

Degree	1	2	 d
Hits	2	1	 0
Insertions	5	4	 4

- Maintaining coverage at the cost of accuracy leads to overall better performance
- Used when both IP-delta and IP stride prefetcher cannot offer prediction
- Feedback directed degree selection

Degree	1	2	 d
Hits	2	1	 0
Insertions	5	5	 4

- Maintaining coverage at the cost of accuracy leads to overall better performance
- Used when both IP-delta and IP stride prefetcher cannot offer prediction
- Feedback directed degree selection

Degree	1	2	 d
Hits	2	1	 0
Insertions	5	5	 4

- Maintaining coverage at the cost of accuracy leads to overall better performance
- Used when both IP-delta and IP stride prefetcher cannot offer prediction
- Feedback directed degree selection

X+d	X+2	X+1	
d	2	1	

Degree	1	2	 d
Hits	2	1	 0
Insertions	5	5	 4

- Maintaining coverage at the cost of accuracy leads to overall better performance
- Used when both IP-delta and IP stride prefetcher cannot offer prediction
- Feedback directed degree selection

X+d	X+2	X+1	
d	2	1	

Degree	1	2	 d
Hits	2	1	 0
Insertions	5	5	 5

- Maintaining coverage at the cost of accuracy leads to overall better performance
- Used when both IP-delta and IP stride prefetcher cannot offer prediction
- Feedback directed degree selection

X+d	X+2	X+1	
d	2	1	

Degree	1	2	 d
Hits	2	1	 0
Insertions	5	5	 5

- Maintaining coverage at the cost of accuracy leads to overall better performance
- Used when both IP-delta and IP stride prefetcher cannot offer prediction
- Feedback directed degree selection

Degree	1	2	 d
Hits	2	1	 0
Insertions	5	5	 5

- Maintaining coverage at the cost of accuracy leads to overall better performance
- Used when both IP-delta and IP stride prefetcher cannot offer prediction
- Feedback directed degree selection

Degree	1	2	 d
Hits	2	1	 0
Insertions	5	5	 5

- Maintaining coverage at the cost of accuracy leads to overall better performance
- Used when both IP-delta and IP stride prefetcher cannot offer prediction
- Feedback directed degree selection

Degree	1	2	 d
Hits	3	1	 0
Insertions	5	5	 5

- Maintaining coverage at the cost of accuracy leads to overall better performance
- Used when both IP-delta and IP stride prefetcher cannot offer prediction
- Feedback directed degree selection

Degree	1	2	 d
Hits	3	1	 0
Insertions	5	5	 5

- Maintaining coverage at the cost of accuracy leads to overall better performance
- Used when both IP-delta and IP stride prefetcher cannot offer prediction
- Feedback directed degree selection

X+d	X+2	X+1	
d	2	1	

Degree	1	2	 d
Hits	3	1	 0
Insertions	5	5	 5

- Maintaining coverage at the cost of accuracy leads to overall better performance
- Used when both IP-delta and IP stride prefetcher cannot offer prediction
- Feedback directed degree selection

- Maintaining coverage at the cost of accuracy leads to overall better performance
- Used when both IP-delta and IP stride prefetcher cannot offer prediction
- Feedback directed degree selection

Demand Access X+1

Γ	Vid		V J			Degree	1	2	 d
	d A+u		2		Evict	Hits	3	1	 0
						Insertions	5	5	 5
		Next	line bι	uffer					

Recent access filter

- Lot of overlapping prefetches due to 3 different components
- Could also be in a single component (e.g. Next-line)
- Should efficiently use Prefetch Queue
- Store the recent demand and prefetch accesses in a small fully associative buffer
- Only issue the prefetch requests if it misses in the recent access filter
- Small in size to avoid missing genuine requests

- Short size of L1 prefetch queue restricts aggressive prefetching
- Leverage the communication b/w L1 and L2 prefetcher
- When the PQ has only entry left then we piggyback the remaining prefetch info with the last prefetch
- L2 cache uses this info to complete the prefetching

- Short size of L1 prefetch queue restricts aggressive prefetching
- Leverage the communication b/w L1 and L2 prefetcher
- When the PQ has only entry left then we piggyback the remaining prefetch info with the last prefetch
- L2 cache uses this info to complete the prefetching

- Short size of L1 prefetch queue restricts aggressive prefetching
- Leverage the communication b/w L1 and L2 prefetcher
- When the PQ has only entry left then we piggyback the remaining prefetch info with the last prefetch
- L2 cache uses this info to complete the prefetching

- Short size of L1 prefetch queue restricts aggressive prefetching
- Leverage the communication b/w L1 and L2 prefetcher
- When the PQ has only entry left then we piggyback the remaining prefetch info with the last prefetch
- L2 cache uses this info to complete the prefetching

- Short size of L1 prefetch queue restricts aggressive prefetching
- Leverage the communication b/w L1 and L2 prefetcher
- When the PQ has only entry left then we piggyback the remaining prefetch info with the last prefetch
- L2 cache uses this info to complete the prefetching

- Short size of L1 prefetch queue restricts aggressive prefetching
- Leverage the communication b/w L1 and L2 prefetcher
- When the PQ has only entry left then we piggyback the remaining prefetch info with the last prefetch
- L2 cache uses this info to complete the prefetching

0			
	IP-delta	32 bits	

- Short size of L1 prefetch queue restricts aggressive prefetching
- Leverage the communication b/w L1 and L2 prefetcher
- When the PQ has only entry left then we piggyback the remaining prefetch info with the last prefetch
- L2 cache uses this info to complete the prefetching

- Short size of L1 prefetch queue restricts aggressive prefetching
- Leverage the communication b/w L1 and L2 prefetcher
- When the PQ has only entry left then we piggyback the remaining prefetch info with the last prefetch
- L2 cache uses this info to complete the prefetching

- Short size of L1 prefetch queue restricts aggressive prefetching
- Leverage the communication b/w L1 and L2 prefetcher
- When the PQ has only entry left then we piggyback the remaining prefetch info with the last prefetch
- L2 cache uses this info to complete the prefetching

- Short size of L1 prefetch queue restricts aggressive prefetching
- Leverage the communication b/w L1 and L2 prefetcher
- When the PQ has only entry left then we piggyback the remaining prefetch info with the last prefetch
- L2 cache uses this info to complete the prefetching

Sangam

Storage Overhead

• L1 prefetcher overhead

Stru	icture	Storage (bits)	TOTAL
IP Table	128 sets, 15 ways	120960	
IP-Delta Table	256 sets, 8 ways	131072	
NL buffer	64 entries	4672	259870 bits = 31 72 KB
Recent Access Filter	40 entries	2840	
Auxiliary Counters	316 bits		

Storage Overhead

• L1 prefetcher overhead

Stru	icture	Storage (bits)	TOTAL
IP Table	128 sets, 15 ways	120960	
IP-Delta Table	256 sets, 8 ways	131072	
NL buffer	64 entries	4672	259870 bits = 31 72 KB
Recent Access Filter	40 entries	2840	31.72 ND
Auxiliary Counters	316 bits		

• L2 prefetcher overhead = 31.36 KB

Performance distribution

Performance distribution

Thank You

Questions?