
23/6/2019 1Philippos Papaphilippou

Pangloss: a novel Markov chain prefetcher

Philippos Papaphilippou

Philippos Papaphilippou, Paul H. J. Kelly, Wayne Luk

Department of Computing, Imperial College London, UK

{pp616, p.kelly, w.luk}@imperial.ac.uk

The 3rd Data Prefetching Championship (co-located with ISCA 2019)

23/6/2019 2Philippos Papaphilippou

Data Prefetchers
● The task:

– Predict forthcoming access addresses
– Hardware mechanism → Agnostic to workload

● Space and logic limitations
● Software alternatives exist

● Multiple approaches for predicting the most likely next accesses
– Through the address stream that was already-seen

● Repeating sections
● Repeating sections relative to the page
● Delta transitions

– Context-based, such as with correlating with
● Page
● Instruction Pointer (IP)
● CPU Cycles

● Other concerns: Throttling mechanisms, most profitable predictions, energy

Processor Memory
SystemPrefetcher

access

context

23/6/2019 3Philippos Papaphilippou

Distance Prefetching
● A generalisation of Markov Prefetching

– Originally: model address transitions
– Approximate a Markov chain, but
– Based on Deltas instead of Addresses

Delta = Address – AddressPrev

● Use the model to prefetch the most probable deltas

AddressNext = Address + DeltaNext

● Deltas example

Address: 1 4 2 7 8 9

Delta: 3 -2 5 1 1

● Delta transitions
– More general than address transitions

● Different addresses

– Can be meaningful to use globally
● Different pages, IPs, etc.

Markov Model
(cactuBSSN)

-42

43

1

-43

2

3

7

8

6

22

14

15 28

42

29

23/6/2019 4Philippos Papaphilippou

Prefetching in the framework (ChampSim)
● Providing one prefetcher for each of the L1, L2 and Last-Level Cache (LLC)
● Last address bits (L2)

– Cache line (byte) offset: 6-bits → Representing 26 = 64 bytes
– Page (byte) offset: 6-bits → Representing 26+6 = 4K bytes

● Address granularity
– L1: 64-bit words → 512 positions in a page
– L2: cache line → 64 positions in a page
– L3: cache line → 64 positions in a page

● Distance prefetching is limited by the page size

– Page allocation/translation is considered random
– Unsafe/unwise to prefetch outside the boundaries

● Example in L2 for delta transition (1, 1)

..1010011010111100XXXXXX saw

..1010011010111101XXXXXX saw

..1010011010111110XXXXXX saw

..1010011010111111XXXXXX prefetch

..1010011011000000XXXXXX prefetch discard

Address
64 bits

Page offset
6 bits

Byte offset
6 bits

1

23/6/2019 5Philippos Papaphilippou

Preliminary experiment
● Gain insights for

– Optimisation
– Understanding complexity of access patterns

● 46 benchmark traces
– Based on the provided set of SPEC CPU2017, for which

MPKI > 1
● Produce an adjacency matrix for delta transition frequencies

On Access:

 If on the same page:

 A[DeltaPrev][Delta] += 1

● Dummy prefetchers (only observing) for
– L1D
– L2
– LLC

-60

-40

-20

0

20

40

60

-60 -40 -20 0 20 40 60

Delta

1

10

100

1000

10000

100000

1x10 6

1x10 7

Frequency

Adjacency Matrix
(cactuBSSN)

23/6/2019 6Philippos Papaphilippou

Observations
● Relatively sparse

– No need for N×N matrix
● Complex access patterns

– Simpler prefetchers might not be enough (e.g stride
prefetching)

● Diagonal (& vertical/ horizontal) lines:
– Random accesses when performing regular strides.
– Example: (1,1) → (1, -40) → (-40, 41) → (41, 1) → (1,1)
– Resulting in new lines: y=-x+1, x=1, y=1

● Hexagonal shape:
– Such outliers would point outside the page
– Example: (50, 50) totals to a delta of 100 ≥ 64

● Sparse or empty matrices: (see mcf_s-1536B)
– Simple patterns or
– Many invalidated deltas

(L2)

23/6/2019 7Philippos Papaphilippou

Key idea: H/W representation with increased accuracy
● Related work

– Markov chain stored in associative structures
● Set-associative
● Fully-associative → expensive

– No real metric of transition probability
● Using common cache replacement policies → based on recency

– First Come, First Served (FCFS)
– Least Recently Used (LRU)
– Not-Most Recently Used (NRU)

● Our approach
– Set-associative cache

● Indexed by previous delta

– Pointing to next most probable delta
– (Least Frequently Used) LFU-inspired replacement policy

● On hit, the counter in the block is incremented by 1
● On a counter overflow, divide all counters in the set by 2

→ maintaining the correct probabilities

Markov Chain in H/W

23/6/2019 8Philippos Papaphilippou

Invalidated deltas
● Interleaving pages can ‘hide’ valid deltas

– Delta = Address – AddressPrev. is not enough

● Example
– 1010011010111100XXXXXX

– 0101100101000100XXXXXX

– 1010011010111101XXXXXX

– 0101100101000111XXXXXX

● Common cases
– Out-of-order execution in modern processors
– Reading from multiple sources iteratively

● merge sort → multiple mergings of two (sub) arrays

+1
+3

23/6/2019 9Philippos Papaphilippou

Invalidated deltas solution

● (small resemblance in related work, such as in VLDP [5], KPCP [6])
● Track deltas and offsets per page
● Providing a H/W-friendly structure

– Set-associative cache
– Indexed by the page
– Holding last delta and offset per page

● Also the page tag and the NRU bit

● Building delta transitions
– If page match:

(DeltaPrev, OffsetPrev – OffsetCurr)

– Update the Markov Chain Per page information

23/6/2019 10Philippos Papaphilippou

Single-thread performance
● Pangloss (L1&L2) speedups: 6.8%, 8.4%, 40.4% over KPCP, BOP, non-prefetch
● For fairness we report the same metrics for our single-level (L2) version

– 1.7% and 3.2% over KPCP and BOP. Geometric Speeup=∏
i=1

46 IPC i
prefetch

IPCi
non prefetch

23/6/2019 11Philippos Papaphilippou

Multi-core performance
● Producing 40 4-core mixes from the 46

benchmark traces
– First, classify the traces according to their

speedup from Pangloss (1-core)
● Low: speedup ≤ 1.3
● High: speedup > 1.3

– Produce 8 random mixes for each of the
following 5 class combinations

● Low-Low-Low-Low (4 low)
● Low-Low-Low-High (3 low & 1 high)
● ...
● High-High-High-High (4 high)

● Evaluate using the weighted IPC speedup
– 4-core speedup in each mix:

1

2

3

4

5

6

7

0 5 10 15 20 25 30 35 40

W
ei

gh
te

d
IP

C
 S

pe
ed

up

4-trace mix (sorted independently)

Proposal (L1 & L2)

KPCP (L2)

Non-prefetch

∑
i=1

4 IPC i
together

IPCi
alone , non prefetch

23/6/2019 12Philippos Papaphilippou

Hardware cost

● Space
– Single-core: 59.4 KB total

● (13.1 KB for single-level (L2))

– Multi-core: 237.6 KB total

● Logic (insights)
– Low associativity

→ up to 16 simultaneous comparisons
– Traversal heuristic: select prob. > 1/3

→ no need to sort

→ only 2 candidate children per layer
– Traversal heuristic: iterative

→ could be relatively expensive, but a
delay could actually help with timeliness

– IP and cycle information not used
● Can be fine-tuned according to the use

case requirements

Description (bits) (KB)
L1D:
Delta cache 1024 sets × 16 ways × (10 + 7) 34.8
Page cache 256 sets × 12 ways × (10 + 10 + 9 + 1) 11.5
L2:
Delta cache 128 sets × 16 ways × (7 + 8) 3.8
Page cache 256 sets × 12 ways × (10 + 7 + 6 + 1) 9.2
LLC: None 0.0
Total 59.4

TABLE I
SINGLE-CORE CONFIGURATION BUDGET

23/6/2019 13Philippos Papaphilippou

END

Thank you for your attention!

Questions?

Philippos Papaphilippou

23/6/2019 14Philippos Papaphilippou

Backup slides

23/6/2019 14Philippos Papaphilippou

23/6/2019 15Philippos Papaphilippou

L1
word-address-granularity

23/6/2019 16Philippos Papaphilippou

L2
line-address-granularity

23/6/2019 17Philippos Papaphilippou

LLC
line-address-granularity

23/6/2019 18Philippos Papaphilippou

Markov chains from other benchmark traces

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

