
T-SKID: Timing Skid Prefetcher
Tomoki Nakamura, Toru Koizumi, Yuya Degawa, Hidetsugu Irie, Shuichi Sakai, Ryota Shioya

The University of Tokyo
{tomokin, koizumi, degawa, irie, sakai}@mtl.t.u-tokyo.ac.jp, shioya@ci.i.u-tokyo.ac.jp

Abstract—Prefetching is essential to reduce the number
of cache misses and improve processor performance. Many
prefetchers have been proposed, including simple but highly
effective stream-based prefetchers and prefetchers that predict
complex access patterns based on structures such as history
buffers and bit vectors. However, many cache misses still occur in
many applications. We found that many applications have simple
address sequences (e.g. stride accesses) that existing prefetchers
often cannot predict due to the long time intervals between their
accesses. Moreover, in these address sequences, even if cache lines
are correctly prefetched, they are often evicted before demand
accesses because of its long interval. In this paper, we propose a
timing skid (T-SKID) prefetcher, which independently learns the
next addresses and the access timing. We evaluated T-SKID with
SPEC CPU 2017 benchmarks according to the rule of DPC3 and
the evaluation results show a more than 40% improvement in
performance compared to a processor without prefetching.

I. INTRODUCTION

Memory access latency is a major bottleneck in program ex-
ecution, and cache misses cause significant performance degra-
dation in computer systems. Prefetching is one of the most
essential techniques to reduce the number of cache misses and
improve processor performance. As a result, many prefetch-
ers have been proposed, including simple stream/stride-based
prefetchers ([1], [2]) and prefetchers that predict complex
access patterns using multiple delta history ([3], [4]) or using
bit vectors recording access patterns ([5], [6], [7]). However,
many cache misses still occur in many applications.

To address this issue, we first analyzed cache access patterns
that are difficult to predict using existing prefetchers. We focus
on L1D cache access patterns because 1) L1D cache hit rates
have a significant impact on performance and 2) an L1D
prefetcher can make an accurate prediction using all addresses
that cannot be obtained in an L2 cache or LLC.

We found that many applications have simple address se-
quences (e.g. stride accesses) that existing prefetchers often
cannot predict due to the long time intervals between their
accesses. For example, Figure 1 visualizes memory accesses
in 607.cactuBSSN_s-2421B of SPEC CPU 2017 [8]. In
this figure, the vertical axis represents access time, horizontal
axis represents address space, and each plotted point represents
a memory access.

On the right side of Figure 1 (a), accesses within the same
PC represented in the rectangle are stride accesses, which
can be easily predicted by simple prefetchers. However, even
if a cache line is successfully prefetched by simple stride
prediction, thrashing access will evict the prefetched line
before a demand access is issued because the capacity of the
L1D cache is very small.
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Fig. 1: A part of memory access pattern of
607.cactuBSSN_s-2421B. The horizontal axis is
the physical address and the vertical axis is time.

Based on the above observation, issuing prefetches at an
appropriate time is important to keep the inserted line from
being evicted. In typical existing prefetchers, both address
prediction and prefetching access are performed simultane-
ously on cache misses, and prefetch timeliness is controlled
by parameters such as prefetch distance, which represents the
address distance from a trigger access. Although timing control
based on the distance can issue prefetch in time for demand
accesses, it cannot delay prefetching for prevention of the
eviction of prefetched cache lines.

We propose a timing skid (T-SKID) prefetcher, which
independently learns address patterns and appropriate prefetch
timing. For learning access patterns, T-SKID is based on a PC,
which has strong correlation of memory access patterns even
in different address zones. T-SKID is based on a structure
called Recent Requests Table (RRT), which is derived from
one used in Best Offset Prefetcher (BOP) [9], to learn access
timing and appropriate distance.

II. DESIGN

Figure 2 shows the block diagram and the behavior of our
proposed T-SKID. T-SKID comprises the following modules:

• The Target Table links trigger PCs and target PCs. In T-
SKID, cache accesses with trigger PCs trigger prefetches
whose addresses are predicted using target PCs.

• The Step Table is a table that records steps and last ac-
cessed addressfor each PC. In this paper, a step represents
the delta between arbitrary two access addresses issued
from the same PC. The difference between a step and
a simple stride is that the step contains multiples of a
stride.
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Fig. 2: Block Diagram and Behavior of T-SKID.

• The Delay Queue is a FIFO to delay the insertion of
addresses and PCs into RRT. This mechanism simulates
a memory access latency.

• RRT is a table that records recent access addresses and
their PCs. In RRT, a new pair comprising an address and
a PC is inserted on prefetch fill or on dequeuing from the
Delay Queue.

• The Inflight Prefetch Table is a table that holds prefetch
access addresses and their PCs until prefetch fill. On
prefetch fill, a fill address is notified from a memory
system but its trigger PC and memory address of a trigger
access are not notified. The Inflight Prefetch Table is used
for tracking such additional information for each prefetch.

• Meta Cache duplicates prefetch bits and cache tags in a
cache and simulates cache behavior for filtering unnec-
essary prefetch accesses.

A. Behavior of T-SKID

1-a) Learning access patterns: We describe how T-SKID
learns access patterns. On a cache access, T-SKID looks up the
Step Table. If it hits, which means there were accesses with
the same PC, T-SKID calculates steps. Specifically, T-SKID
determines steps by calculating the difference between the
address of the cache access and recently accessed addresses,
depending on the following cases:

1) If the RRT does not contain accesses with the same
PC of the access: In this case, there is no access with
the same PC in the near past. T-SKID looks up the
Step Table with the PC and calculates a step, using
a last address from the table. Based on a calculated
step, T-SKID updates a step in the Step Table. Unlike
conventional prefetchers, T-SKID can learn a zero-step
pattern, which means “step = 0.” Zero-step prefetching,
that is, prefetching the address that just missed, does not
make sense in the conventional prefetchers, but T-SKID
can delay prefetch timing and long-term re-referencing
access can be prefetched at appropriate timing.

2) If the RRT contains accesses with the same PC of the
access: In this case, there are accesses with the same PC
in the near past. Steps are calculated using addresses in

RRT instead of those in the Step Table. The step in this
case corresponds to a combination of delta and distance
in existing prefetchers.

1-b) Learning appropriate prefetch timing: Next, we de-
scribe a method to learn appropriate prefetch timing in T-
SKID. On a cache access (we call this access α), T-SKID
looks up the Step Table as previously described. If it hits or a
new entry is allocated, which means any accesses with the PC
of α have ever been missed, this PC is regarded as a target
PC and is written to Target Table entries corresponding to all
PCs in RRT. The PCs in RRT can be used for trigger PCs for
α, because these PCs were inserted into RRT on cache fill.
That is, when prefetches for α are triggered by these PCs, it
is possible to insert the prefetched lines before α occurs.

2) Prediction: Figure 2b shows how T-SKID predicts ad-
dresses and issues prefetches. First, on a cache access, target
PCs linked to the PC of this access are searched in the Target
Table. The obtained target PCs are the PCs of accesses that
should be triggered by this access. Second, T-SKID looks up
the Step Table using obtained target PCs and obtains steps and
the last accessed addresses. Finally, addresses are calculated
using the obtained steps and are sent to the Prefetch Filter.
If the same address is in neither the Inflight Prefetch Table
nor the Meta Cache, the address is prefetched. By using the
Prefetch Filter, it is able to avoid to waste Prefetch Queue
entries and MSHR entries.

B. Compliance with the contest rules

Not accessing any information other than the permitted:
To avoid prefetching addresses existing in the L1D cache
and wasting Prefetch Queue entries, it is necessary to know
whether a predicted address has been prefetched or exists in
the L1D cache but is not allowed to access the L1D cache to
know this, according to the rule of DPC3. To follow this rule,
we implemented the Inflight Prefetch Table and Meta Cache in
T-SKID and included them in the storage budget. These data
structures consist of information obtained from the values in
the function arguments of the l1d_cache_fill function.
We do not use the get_set and get_way functions.

III. EVALUATION

1) Storage: T-SKID requires 53.78KB of storage. Table I
lists the storage breakdown. We used Signature Path Prefetch-
ing (SPP) for the L2 cache in DPC3’s Competition. In the
simulation, SPP used spp_dev.l2c_pref implemented in
Champsim [10]. Thus, SPP storage is also shown in Table II.
The total storage of T-SKID and SPP is 59.29KB per core,
which satisfies the 64KB storage limit for the DPC3.

2) Configuration: We evaluated T-SKID according to the
DPC3 1-core configuration with all SPEC CPU 2017 traces
with an LLC MPKI of at least 1.0, without any prefetching. All
simulation results are warmed up with 50M instructions and
simulated for additional 200M instructions. The parameters of
caches used in the simulation are shown in Table III.



TABLE I: T-SKID Storage Computation

Structure Components Number of Bits Storage 

Step 
Table 

32 Sets, 
16-way 

target PC tag 11  = 512 × 11 5632 

227328 

last address 48  = 512 × 48 24576 

step group 
4 Entries 

step 13  = 512 × 4 × 13 26624 
confidence 3  = 512 × 4 × 3 6144 

confidence denominator 5  = 512 × 5 2560 

trigger PC 
group 

16 Entries 
trigger PC 16  = 512 × 16× 16 131072 
confidence 3  = 512 × 16 × 3 24576 

confidence denominator 7  = 512 × 7 3584 
LRU order 4  = 512 × 4 2048 

valid 1  = 512 × 1 512 

Target 
Table 

32 Sets, 
 16-way 

trigger PC tag 11  = 512 × 11 5632 

172032 
16 Entries 

target PC 16  = 512 × 16 × 16 131072 
LRU order 4  = 512 × 16 × 4 32768 

LRU order 4  = 512 × 4 2048 
valid 1  = 512 × 1 512 

Recent 
Requests 

Table 
16 Entries 

trigger PC 16  = 16 × 16 256 
1088 trigger address 48  = 16 × 48 768 

LRU order 4  = 16 × 4 64 

Inflight 
Prefetch 

16 Entries 

prefetch line address 42  = 16 × 42 672 

1712 
trigger PC 16  = 16 × 16 256 

trigger address 48  = 16 × 48 768 

valid 1  = 16 × 1 16 

Meta 
Cache 

64 Sets, 
8-way 

tag 36  = 512 × 36 18432 
18944 

prefetch bit 1  = 512 × 1 512 

Delay 
Queue 

128 Entries 

trigger PC 16  = 128 × 16 2048 

10255 

trigger address 48  = 128 × 48 6144 

enqueue time 16  = 128 × 16 2048 

head 7  = 7 7 

tail 7  = 7 7 

full 1  = 1 1 

Total 
430271 bits 
= 52.52 KiB 

TABLE II: SPP Storage Computation

Structure Components Number of Bits Storage 

Signature 
Table 

256 Entries 

valid 1  = 256 × 1 256 

11008 
tag 16  = 256 × 16 4096 

signature 6  = 256 × 6 1536 
last offset 12  = 256 × 12 3072 
LRU order 8  = 256 × 8 2048 

Pattern 
Table 

512 Entries 
4 Entries 

delta 7  = 512 × 4 × 7 14336 
24576 confidence 4  = 512 × 4 × 4 8192 

signature confidence 4  = 512 × 4 2048 

Prefetch 
Filter 

1024 Entries 

valid 1  = 1024 × 1 1024 

8192 tag 6  = 1024 × 6 6144 

useful 1  = 1024 × 1 1024 

Global 
History 
Buffer 

8 Entries 

valid 1  = 8 × 1 8 

264 

signature 12  = 8 × 12 96 

confidence 7  = 8 × 7 56 

page offset 6  = 8 × 6 48 

delta 7  = 8 × 7 56 

Accuracy 
Counter 

prefetch_useful 10  = 10 10 
20 

prefetch_issued 10  = 10 10 

Total 
44060 bits 
= 5.38 KiB 

3) Performance: Figure 3 shows the IPC speedup of T-
SKID (without SPP at the L2 cache in this section) and
BOP/SPP, which are the state of the art prefetchers. This
result shows T-SKID has significantly improved performance
over existing prefetchers, especially in 607.cactuBSSN_s
traces, 605.mcf_s traces, and 602.gcc_s-2226B. In
607.cactuBSSN_s traces, it is important to control prefetch
timing, as described in the introduction. This result shows that
prefetching the cache line at an appropriate timing for the L1D
cache can significantly improve the performance.

TABLE III: cache parameter

capacity associativity hit latency bandwidth
L1D Cache 32KiB 8-way 4 cycle 2 Line/cycle
L2 Cache 256KiB 8-way 16 cycle 1 Line/cycle
L3 Cache 2MiB/Core 16-way 44 cycle 1 Line/cycle

Main Memory 4 GiB > 96 cycle 1/24 Line/cycle

4) Miss Coverage and Overpredictions: To evaluate the
effectiveness of T-SKID, Figure 4 shows the coverage and
overprediction. This result shows that T-SKID improves cov-
erage in many traces. This is because T-SKID can predict
not only timing control but also close access patterns. In
addition, T-SKID improves the accuracy and coverage in
607.cactuBSSN_s where timing control is important. T-
SKID shows a high percentage of useless access in some
traces, but this does not cause a serious problem, because T-
SKID does not have much useless access to the main memory
as shown in Figure 5. Even in a multi-core environment, T-
SKID does not disturb other workloads by overprediction.

IV. CONCLUSION

In this paper, we analyzed access patterns that were difficult
to predict with conventional prefetchers, and we revealed that
many applications show access patterns with simple address
sequences while time intervals between their accesses are
long. We proposed T-SKID, which learns address patterns
and timing to trigger prefetch accesses independently. T-SKID
predicts address steps for each PC, while it learns prefetch
trigger timing. We evaluated T-SKID with SPEC CPU 2017
benchmarks according to the rule of DPC3 and the evalua-
tion results show more than 40% performance improvement
compared to a processor without prefetching.
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Fig. 3: IPC speedup versus no prefetching.
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Fig. 5: LLC_TOTAL_MISS of T-SKID as compared to the existing prefetchers. “B” represents Best-Offset Prefetcher. “S”
represents SPP. “T” represents T-SKID.


