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ABSTRACT
Data prefetching is an important technique used in all commercial
processors. Data prefetchers aim at hiding the long data access la-
tency. In this paper, we present the design of an L1 cache prefetcher
that employs three different components organized in a hierarchical
manner to address the diversity of access patterns. Each level of the
prefetcher uses different amounts of control-flow and data-flow in-
formation. The first level of the prefetcher exploits the joint feature
of instruction pointer (IP) and the current delta (i.e., control-flow
as well as data-flow) in the access stream sourced by the current IP
to predict a sequence of deltas with high confidence. To maintain
high coverage, when the IP-delta-based prefetcher is unable to of-
fer a high-confidence prediction, we invoke the second level of the
prefetcher which employs an IP-based (i.e., only control-flow-based)
stride predictor. If the IP-based stride predictor is also unable to
discover any stride pattern with confidence, a next-line prefetcher
with adaptive degree (only data-flow-based) is triggered at the third
level of the prefetcher. The same three-level prefetcher, incorporated
at the L2 cache, however, offers marginal benefits when working
together with the L1 cache prefetcher. We also augment our three-
level L1 cache prefetcher with a technique to optimize L1 cache
lookup bandwidth consumed by the prefetches. Additionally, our
proposal incorporates a novel technique to maintain the aggressive-
ness of the L1 cache prefetcher even at the time of resource shortage
in the L1 cache controller. Averaged over 46 single-thread SPEC
CPU 2017 traces, our proposal achieves a 40.3% speedup over no
prefetching. On a four-core configuration, averaged over 100 four-
way multi-programmed workloads, our proposal achieves a 19.5%
speedup over no prefetching.

1. INTRODUCTION
The widening gap between the processor and memory speeds

has motivated the processor designers to explore techniques for
hiding the long data access latency. Data prefetching is one of
the prominent techniques in this category. The data prefetching
problem seeks to infer the upcoming addresses in the demand access
stream of an application and prefetch the data blocks residing at
those addresses into the processor cache hierarchy. In a multi-level
cache hierarchy of today’s processors, a prefetcher, depending on
the design, can bring data blocks into different levels of the cache
hierarchy. However, since the L1 cache is the closest to the processor
and the smallest among all the cache levels, it is important to design
efficient L1 cache prefetchers with high accuracy and good coverage.
Fetching future demand blocks into the L1 cache in a timely manner
can offer the best performance. Additionally, we observe that the L1
cache is also the best place for learning any access pattern because
an unfiltered access stream can be observed at the L1 cache making
the learning process most reliable. For example, in a three-level
∗ Sangam means a confluence of rivers, particularly between the Ganges,
the Yamuna, and the Rigvedic metaphysical river Sarasvati in the Northern
Indian city of Allahabad.

cache hierarchy with L1, L2, and L3 caches, an IP-based stride
prefetcher of degree four incorporated in the L1 cache achieves
30.2% speedup averaged over 46 single-threaded SPEC CPU 2017
traces. The same prefetcher incorporated in the L2 cache achieves
only 24.9% speedup. There are two reasons for this speedup gap.
First, the L2 cache prefetcher learns the stride pattern from a filtered
access stream leading to unreliable learning of strides. Second,
the prefetched blocks are not brought all the way to the L1 cache.
The first shortcoming of erroneous learning can be addressed by
incorporating the prefetcher in the L1 cache, but continuing to bring
the prefetched blocks only up to the L2 cache. This optimization
improves the speedup achieved by the aforementioned IP-based
stride prefetcher to 27.4%. Motivated by these observations, we
focus on designing an L1 cache prefetcher that brings prefetched
blocks all the way to the L1 cache.

Our proposed prefetcher employs three different components or-
ganized in a hierarchical fashion exploiting different amounts of
control-flow and data-flow information in the components. The
components are an IP-delta joint feature-based delta sequence pre-
dictor, an IP-based stride prefetcher, and an adaptive-degree next-
line prefetcher. We further augment our L1 cache prefetcher with
two important techniques. The first one is a technique to optimize
L1 cache lookup bandwidth consumed by the prefetches, while the
second one is a novel mechanism to maintain the aggressiveness
of the L1 cache prefetcher even at the time of resource shortage in
the L1 cache controller. Overall, averaged over 46 single-thread
SPEC CPU 2017 traces, our proposal achieves a 40.3% speedup
over no prefetching. On a four-core configuration, averaged over
100 four-way multi-programmed workloads, our proposal achieves
a 19.5% speedup over no prefetching.

2. RELATED WORK
Recent years have seen a sizable volume of contributions in the

area of data prefetching with deep lookahead and improved timeli-
ness [8, 11, 13, 14]. These proposals typically design delta predic-
tors that can lead to a prefetch sequence. Another body of work has
explored instruction as well as data prefetching techniques in the
context of server workloads [3, 4, 5, 15, 16, 17, 18, 19]. Prefetch-
ers with thread-awareness have been explored for multi-threaded
workloads [2, 10]. Specialized prefetchers for irregular memory
accesses have been proposed [7]. Criticality-aware prefetching has
been explored in the context of a multi-level cache hierarchy [12].
Prefetching and caching policies that do not rely on instruction
pointers have been researched [9]. Further, prefetch-aware caching
policies have been proposed [6, 20].

3. DESIGN OF PROPOSED PREFETCHER
Our proposal has three component prefetchers, namely an IP-

delta-based delta sequence predictor, an IP-based stride predictor,
and a next line prefetcher with adaptive degree. The overview of
the prefetcher flow is shown in Figure 1. The L1 cache prefetcher
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components are looked up on every demand access to the L1 cache
and a prefetch sequence is generated. A common base prefetch
degree d is maintained for all the three components meaning that
at most d prefetches would be injected on every L1 cache demand
access. We discuss the details in the following.
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Figure 1: Overview of L1 cache prefetcher. PQ stands
for the prefetch request queue.

3.1 IP-Delta-based Sequence Predictor
The IP-delta-based sequence predictor first categorizes all de-

mand accesses based on their source IP. Next, for a given access
coming from a particular source IP and having a delta relative to
the last access from the same IP, the predictor predicts a sequence
of next d deltas. A delta between two accesses is defined as the
difference between the offset of the current access (i.e., cache block
number within a page) and the offset of the last access. The motiva-
tion of using this predictor arises from the observation that within
the accesses coming from a particular IP, the sequence of deltas
appearing after a given delta ∆ is often repeated after the same delta
∆ e.g., ∆,δ1,δ2,δ3,δ4, . . . ,∆,δ1,δ2,δ3,δ4, . . ..

This predictor requires two tagged set-associative tables. The first
table, referred to as the IP table (the tables are named after the entity
used to index into the table), is looked up using the IP of the current
demand access. Each entry of the IP table stores a FIFO list of the
last seen d +1 deltas corresponding to the index IP. It also stores
the last offset to enable computation of the next delta. Additionally,
each entry has a partial tag, valid bit, and LRU states. If there are N
cache blocks within a page, we encode each delta using 1+ log2(N)
bits where the most significant bit of a delta encodes its sign (sign-
magnitude representation of delta). The second table, referred to as
the IP-delta table, is looked up using a concatenation of the IP of
the current demand access and the current delta within the access
stream sourced by that IP. Each entry of this table stores a sequence
of d deltas seen right after the delta used for indexing into the table,
given the source IP of the index. Each of the d deltas also has a
two-bit confidence counter. Each entry also stores a partial tag, a
valid bit, and LRU states. This table is updated as follows. First,
the IP table is looked up with the current IP and the corresponding
FIFO list of d +1 deltas is updated (a new delta is inserted at the
tail and the oldest one is replaced). Next, for each k, the kth delta
of the FIFO list is used (k = 0 being the oldest) along with the IP
to index into the IP-delta table. The corresponding IP-delta table
entry’s (d − k)th delta is updated with the newly inserted delta in
the FIFO list. If the new delta matches the delta at position (d − k)
of the IP-delta table entry, the confidence counter at that position
is incremented by one using saturating arithmetic; otherwise the
confidence counter at that position is reset to zero.

A prediction is obtained by looking up the IP-delta table using
the current IP and delta (within the accesses sourced by the current
IP). The delta sequence is read out from the matching IP-delta table
entry in the case of a hit. If a delta in the read-out sequence has
confidence below a threshold τc, that delta is predicted as zero. This
delta sequence is used to generate a prefetch sequence until a zero

delta is encountered. When a zero delta is encountered and the
number of generated prefetches is below d, it is checked whether the
last two non-zero deltas in the delta sequence are identical. If they
are, prefetching continues with that delta; otherwise the prefetching
sequence is terminated prematurely. In the case of a miss in the IP-
delta table or IP table, no prediction can be generated. We observed
that using a hash of the last few IPs along with the last few deltas
for indexing into the IP-delta table does improve the accuracy of the
predictor, but lowers the table hit rate drastically. As a result, we
stick to the single IP and single delta-based indexing scheme for the
IP-delta table.

3.2 IP-based Stride Prefetcher
We leverage the stride prediction from the IP table when the

IP-delta-based sequence predictor cannot offer a prediction due to
IP-delta table misses or low-confidence predictions. This strategy
avoids loss in coverage. This prediction comes for free without any
additional overhead, since the IP table has to be looked up anyway.
After the FIFO list of the matching IP table entry is updated by
inserting the current delta, if the last (youngest) two deltas in the
FIFO list are identical, this delta is used for generating a prefetch
sequence of length d in the cases when the IP-delta table cannot
offer a prediction due to miss or low confidence. We also employ
this delta predicted from the IP table to complete an otherwise
prematurely terminated prefetch sequence due to a low confidence
delta in the IP-delta table’s predicted sequence, as already discussed.

3.3 Next-line Prefetcher
The IP-delta table prediction and the IP table’s stride prediction

incorporate an inherent notion of confidence, which is very impor-
tant for an L1 cache prefetcher to avoid polluting the small cache.
In the cases where none of these prediction mechanisms is able to
offer a prediction, we employ a next-line prefetcher. With the help
of a feedback mechanism, we avoid polluting the L1 cache with
inaccurate next-line prefetches. Our proposal inserts all next-line
prefetch candidates up to degree d in a small fully-associative next-
line buffer (NL buffer). Each entry of this buffer holds a tag, the
prefetch degree (log2(d) bits) that resulted in the insertion of the
tag, a valid bit, and LRU states. Every demand access looks up
this buffer for a matching tag. For each prefetch degree d̃(≤ d), we
maintain two counters, one for counting the number of NL buffer
insertions at degree d̃ and one for counting the number of demand
hits to entries inserted at degree d̃. When a demand access hits
an entry, it increments the hit counter corresponding to the degree
recorded in the matching entry. At this time, the matching entry is
invalidated from the NL buffer. At the time of inserting a prefetch
candidate of degree d̃ in the NL buffer, the corresponding insertion
counter is incremented if the inserted tag is not already present in
the NL buffer. If the tag to be inserted already exists in the buffer
and the degree D recorded in the matching buffer entry is more than
d̃ (meaning that a higher degree prefetch inserted this tag in the past),
we set the degree in the entry to d̃, increment the insertion counter
corresponding to degree d̃, and decrement the insertion counter
corresponding to the old higher degree D. This gives priority to
lower degree prefetches avoiding large lookahead in the next-line
prefetcher, which can be quite inaccurate. When generating a next-
line prefetch at a distance (or degree) of d̃ from the base demand
address, the ratio of the hit and insertion counters of degree d̃ is
looked up and if the ratio is above a threshold τd , then only the
prefetch is injected into the prefetch queue.
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3.4 Recent Access Filter
Ideally, every prefetch request should be accurate and should

generate a new miss from the L1 cache. This makes sure that the L1
cache lookup bandwidth consumed by the prefetches is not wasted.
Unfortunately, it is not easy to figure out which prefetches will hit
in the L1 cache without looking up the cache. We approximately
answer this question by maintaining a small fully-associative Recent
Access buffer for keeping track of the recently seen tags in the de-
mand access stream and the recently inserted prefetches. These tags
are most likely to stay in the L1 cache or the L1 miss status holding
registers (for the misses). A newly generated prefetch request looks
up this buffer and in the case of a hit, the prefetch is dropped. We
note that it is important to be conservative in this estimate because
dropping a genuine prefetch that would have missed in the L1 cache
lowers coverage. Therefore, the Recent Access buffer is kept small.

3.5 Handling Resource Shortage
The L1 cache controller is usually not equipped with resources to

prefetch aggressively. One important resource used by the prefetches
is the prefetch request queue (PQ)1. A new prefetch is inserted at
the tail of the PQ. With a small PQ, it is quite possible that the
prefetch aggressiveness can get throttled down due to frequently
full PQ. One option is to move the prefetcher to the L2 cache where
the resources are plenty. However, as already pointed out, learning
access patterns from a filtered stream as seen by the L2 cache is
not reliable. We propose a simple solution to this problem that
leverages communication between the L1 cache prefetcher and
the L2 cache. While injecting prefetches, the L1 cache prefetcher
checks the occupancy of the PQ. If only one slot is left, it injects
one more prefetch and with it piggybacks the information regarding
the residual prefetches, if any, that it could not inject due to shortage
of PQ entries. The L2 cache prefetcher inspects the piggybacked
information (passed as a 32-bit metadata encoded in the prefetch
packet), decodes the information, and injects the residual prefetches.
These prefetches will be filled up to the L2 cache and will not
propagate to the L1 cache. This piggybacking facility is used for
IP-delta-based sequence prefetching and IP-based stride prefetching.
It is not used if the next-line prefetcher runs out of PQ space, since
this prefetcher component is, in general, far less accurate. The
piggybacked information uses one of the two possible encodings: a
sequence of deltas (for residual IP-delta-based sequence prefetching)
and a constant delta (for residual IP-based stride prefetching). The
most significant bit of the 32-bit metadata is used to distinguish
between these two encodings. The remaining 31 bits encode either
a sequence of deltas or just one stride.

3.6 L2 Cache Prefetcher
While an accurate and high-coverage L1 cache prefetcher alone

can be quite effective, an L2 cache prefetcher triggering further
prefetches on L1 cache misses can offer very deep lookahead over-
all. However, a very deep lookahead seldom remains accurate.
Nonetheless, we replicate our L1 cache prefetcher at the L2 cache
also with two simplifications as outlined in the following. First,
there is no Recent Access buffer in the L2 cache prefetcher, since
the L2 cache access bandwidth is plenty thanks to the L1 cache hits.
Second, the L2 cache does not piggyback any residual prefetches
to the L3 cache primarily because this facility is seldom needed
given the reasonably large L2 cache PQ. We note that the L2 cache
1 The shortage of PQ space hides shortage of miss status holding registers
which are used later in the prefetching pipeline.

prefetcher, on a prefetch access, may have to first inject the residual
prefetches coming in the encoded format from the L1 cache and
then invoke the L2 cache prefetcher for injecting more prefetches.
In both cases, the L2 cache uses a base prefetching degree and the
overall number of prefetches can be up to twice the base degree.

3.7 Storage Overhead
We calculate the storage overhead of our prefetcher assuming

4 KB pages and 64-byte cache blocks. Therefore, there are 64 cache
blocks per page and hence, each delta can be encoded in seven bits
using sign-magnitude representation. We set the L1 cache base
prefetching degree to four and the L2 cache base prefetching degree
to three and two respectively for single- and multi-core. Each entry
of the IP table is restricted to 63 bits by appropriately sizing the
partial tags. Similarly, each entry of the IP-delta table is restricted to
64 bits. Each entry of the NL buffer is 73 bits, while each entry of
the Recent Access buffer is 71 bits. Tables 1 and 2 show the storage
overheads of the L1 and L2 cache prefetchers, respectively. The
total overhead per core is 63.1 KB. Our proposal uses two threshold
parameters, the values of which are summarized in Table 3.2

Table 1: Storage overhead of L1 cache prefetcher
Structure Storage

IP table 128 sets, 15 ways, total bits = 120960
IP-delta table 256 sets, 8 ways, total bits = 131072
NL buffer 64 entries, total bits = 4672
Recent Access 40 entries, total bits = 2840
buffer
Auxiliary counters 316 bits
and registers
TOTAL 259870 bits

Table 2: Storage overhead of L2 cache prefetcher
Structure Storage

IP table 128 sets, 15 ways, total bits = 120960
IP-delta table 256 sets, 8 ways, total bits = 131072
NL buffer 64 entries, total bits = 4672
Auxiliary counters 248 bits
and registers
TOTAL 256952 bits

Table 3: Threshold values
Threshold Reference L1 prefetcher L2 prefetcher

τc Section 3.1 Single-core: 2 Single-core: 2
Multi-core: 3 Multi-core: 2

τd Section 3.3 1
4

1
2

4. SIMULATION RESULTS
We evaluate our proposal on the ChampSim DPC3 infrastructure.

As per the published official rules, we use the perceptron branch
predictor and LRU replacement policy in the L3 cache. The L3
cache has no prefetcher. We use 46 single-thread traces captured
from the SPEC CPU 2017 applications for the single-core evaluation.
These traces have L3 cache MPKI of at least 1.0 in the baseline
configuration without any prefetcher. We evaluate our proposal in
a four-core configuration using 100 four-way multi-programmed
2 Source code with tuned parameter values is available at
https://www.cse.iitk.ac.in/users/mainakc/sangam_tuned.html.
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workloads (45 homogeneous3 and 55 heterogeneous prepared by
uniform random mixing of traces).

Figure 2 shows the speedup achieved by our proposal on 46
single-thread traces. A bar represents the speedup of a trace. We
have categorized the traces application-wise. The average speedup
is 40.3%. Figure 3 shows the gradual improvement in speedup as
different components are added. The speedup figure for each bar
is an average over 46 single-thread traces. The leftmost two bars
quantify the speedup of adding an IP-based stride prefetcher (L21)
and an IP-delta-based sequence prefetcher (L22) in the L2 cache.
The bars D1 and D2 respectively show the speedup when these two
prefetchers are incorporated in the L1 cache. These results clearly
show that adding a prefetcher in the L1 cache is better than adding
it to the L2 cache. Next, we gradually add different components of
our proposal to the design D2 which is an IP-delta-based sequence
prefetcher. The design D3 employs the IP-based stride predictor on
top of D2 when the IP-delta-based sequence prefetcher cannot offer
a prediction. The design D4 incorporates the recent access filter
on top of D3. The design D5 employs piggybacking of residual
prefetch information to the L2 cache on top of design D4. The
design D6 introduces a next-line prefetcher with best static prefetch
degree on top of D5. This prefetcher is triggered when none of
IP-delta-based and IP-based prefetchers can offer a prediction. The
design D7 replaces the oracle best static degree by the adaptive
degree next-line prefetcher incorporating the NL buffer. Finally, the
design D8 incorporates the L2 cache prefetcher. As can be seen, the
speedup improves gradually as each optimization is incorporated
justifying its inclusion in the design. The L2 cache prefetcher brings
marginal benefits on top of the fully optimized L1 cache prefetcher
represented by the design D7. The right side of Figure 3 evaluates
five L2 cache prefetchers (C1 to C5) for comparing against the
performance of Sangam. C1, C2, and C3 are the top three performers
from DPC2 [1], while C4 and C5 are two recently proposed L2
cache prefetchers—signature path prefetcher (SPP) [8] and kill the
program counter prefetcher (KPCP) [9]. All these single-component
L2 cache prefetchers fall significantly short compared to Sangam.
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Figure 2: Single-core speedup.
On a four-core configuration, our proposal achieves an average

speedup of 19.5% over 100 workloads. For 45 homogeneous work-
loads, the speedup is 10.2%, while that for the 55 heterogeneous
workloads is 27.7%.

5. SUMMARY
We have presented the design of a multi-component core cache

prefetcher focusing primarily on the L1 cache prefetcher. The

3 One trace of fotonik3d runs into a deadlock when run in rate mode.
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Figure 3: Single-core speedup with addition of different
features and comparison with L2 cache prefetchers.

prefetcher incorporates three distinct address prediction compo-
nents along with two optimizations targeting conservation of L1
cache lookup bandwidth and maintaining the aggressiveness of the
prefetcher in the face of resource shortage. Our proposal achieves
an average 40.3% speedup on 46 single-thread traces and 19.5%
speedup on 100 four-way multi-programmed workloads.
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