
Enhancing Signature Path Prefetching with Perceptron
Prefetch Filtering

Eshan Bhatia1, Gino Chacon1, Elvira Teran2, Paul V. Gratz1 and Daniel A. Jiménez3

1Texas A&M University, {eshanbhatia22, ginochacon, pgratz}@tamu.edu
2Texas A&M International University, elvira.teran@tamiu.edu

3Texas A&M University and Barcelona Supercomputing Center, djimenez@tamu.edu

ABSTRACT
In this paper, we evaluate an implementation of a multi-
cache-level prefetching system under the 3rd Data Prefetch-
ing Championship framework. Our approach is based on
enhancing a baseline prefetcher, Signature Path Prefetch-
ing (SPP) with a new, perceptron-based scheme of prefetch
filtering. The key idea here being that by de-constraining/de-
throttling the underlying prefetcher we can achieve high cov-
erage, while using the perceptron prefetch filter to ensure
high accuracy.

Our evaluation on the memory intensive traces of SPEC
CPU 2017 suite shows that this approach enhances the IPC
of the system by 40.4% over no prefetching for a single-core
configuration and by 20.3% for a four-core configuration.
On the system, the winner of DPC-2 achieves the resultant
speedup of 28.4% and 15.1% in single-core and four-core
systems respectively.

1. INTRODUCTION
Prefetchers are designed around a fundamental trade-off be-

tween two important metrics: coverage and accuracy. Prefetcher
coverage refers to the fraction of baseline cache misses that
the prefetcher brings to the cache before their reference. Ac-
curacy refers to the fraction of prefetched cache lines that are
actually used by the application. The key idea in this paper
is to efficiently balance this trade-off. Our approach yields
a prefetching mechanism that can learn complex pointer-
chasing patterns (high coverage) and yet work well on con-
strained multi-core systems (high accuracy).

A key challenge in prefetching for multi-level cache hierar-
chies lies in designing a coordinated prefetch design approach.
This involves controlling the inter-hierarchy prefetch commu-
nication like prefetch misses from L1D appearing as accesses
to L2C. Another aspect to consider is placement of the in-
coming prefetches. A correct prefetch suggestion placed in
the wrong level, say L1D, can potentially do more harm by
wasting precious resources.

In this paper, we follow a modular approach of explaining
our basic prefetcher – SPP, our perceptron prefetch filtering
scheme – PPF, and the further enhancements included to

address the trade-offs described above. Finally, we discuss
fitting together the pieces across the cache levels in the final
prefetching mechanism implemented.

In a single core configuration, running a mix of memory
intensive SPEC CPU 2017 traces, our prefetcher increases
performance by 40.4% compared to no prefetching. In a
four-core system, it saw an improvement of 20.3% over the
baseline.

2. BACKGROUND
In this section we discuss existing approaches that have

been used in our submission, namely: Signature Path Prefetcher
and Perceptron-based on-line learning.

2.1 Underlying prefetcher
The original Signature Path Prefetcher [1] was proposed by

Kim et. al. SPP is a confidence-based lookahead prefetcher.
It creates a signature associated with a page address by com-
pressing the history of accesses. By correlating the signature
with future likely delta patterns, SPP learns both simple and
complex memory access patterns quickly. By pushing the
predicted delta on to the existing signature, a new speculative
signature can be generated which allows further prefetching
down a speculative path within the page.
Signature Table: The Signature Table is indexed using the
page number and captures memory access patterns within a
page boundary. It does so by storing the last few memory
accesses in the form of a compressed 12-bit signature, given
as:

NewSignature = (OldSignature << 3bits) XOR (Delta)

Delta is the numerical difference between the block offset of
the current and the previous memory access. This signature is
used to index into the Pattern Table. This process is illustrated
in Figure 1.
Pattern Table: The Pattern Table, shown on the right side
in Figure 1 is indexed by the signature generated from the
Signature Table. The Pattern Table holds predicted delta
patterns and their confidence estimates. Each entry is indexed
by the signature and holds up to 4 unique delta predictions.
Global History Register: The Global History Register tries

1



Index

0x0

0x1

Delta

0

0

+1

+5

Cdelta

0

0

2

4 → 5

Csig

0

6 → 7

Pattern Table

Access to
Page 4 

 Offset 5

Signature Table
Page
Tag

Last
Offset Signature

1

2

3

4

10

4

3

2 → 5

0x53 
(+1,+2,+3) 

0x4

0xA 
(+1,+2) 

0x1 → 0xC 
(+1) (+1, +5)

Sig: 0x1 
Delta: +5 

Figure 1: SPP Data-path Flow

Signature: 0xC 

Confidence (P0)=Cdelta/Csig 
= 0.8

Lookahead
Signature

Pd > Tp
Prefetch 

(Baseα +3)

Confidence (Pd)=α * Cdelta/Csig * Pd-1

Index

0xC

0xD

Delta

-1

3

-2

+2

Cdelta

1

4

2

2

Csig

5

4

Pattern Table

(0xC << 3) XOR (+3) = 0x63

Figure 2: SPP Architecture

to learn from the prefetch suggestions that were rejected as
they crossed page boundaries. By bootstrapping its learning
from such prefetch suggestions, SPP learns about page tran-
sitions, enabling SPP to have a quicker warm-up period for
unseen pages.
Lookahead Prefetching: On each trigger, SPP uses its own
prefetch suggestion to iteratively generate new prefetch sug-
gestions. Using the current prefetch as a starting point, it
re-accesses the Pattern Table to generate further prefetches.
As illustrated in Figure 2, it repeats the cycle of accessing
Pattern Table and updating the signature based on highest
confidence prefetch from the last iteration. The iteration
counter on which SPP manages to predict prefetch entries in
the lookahead manner is characterized as its ‘depth’. While
doing so, SPP also continues compounding the confidence
at each step such that as depth increases, overall confidence
decreases.
Confidence Tracking: SPP scores its prefetch suggestions,
denoted by Cd. The score is approximated as the ratio of
the hits for a given delta per signature to the hits for that
signature. In the lookahead mode, the path confidence Pd is
given as:

Pd = α .Cd . Pd-1

Here α represents the global accuracy, calculated as the ratio
of the number of prefetches which led to a demand hit to the
number of prefetches recommended in total. The range of α

is [0,1]. The lookahead depth is represented by d. The final
Pd is thresholded against pre-defined thresholds to decide
whether to prefetch or not and to decide the fill level.

2.2 Perceptron Learning
Perceptron learning for microarchitectural prediction was

originally introduced for branch prediction [2]. Our predictor
uses a version of a microarchitectural perceptron prediction
known as the “hashed perceptron” [3]. The hashed percep-
tron predictor hashes several different features into values

L2
Cache

L3 Cache

Core

Baseline
Prefetcher

Off-Chip DRAM

PPF
Reject Table

Prefetch Table

Perceptron Weight
Tables

Prefetch
Suggestion

Training and
feature data from

L2 demand access

Prefetch (insert into either L2 or L3)

L1D L1I

Prefetches

Metadata

Prefetcher
specific
metadata

L1
Prefetcher

L3
Prefetcher

Figure 3: PPF Architecture in the Memory Hierarchy

that index several distinct tables. Small integer weights are
read out from the tables and summed. If the sum exceeds a
certain threshold, a positive prediction is made, e.g. “predict
branch taken” or “allow the prefetch.” Otherwise, a negative
prediction is made. Once the ground truth is known, the
weights corresponding to the prediction are incremented if
the outcome was positive, or decremented if it was negative.
This update only occurs if the prediction was incorrect or if
the magnitude of the sum failed to exceed a threshold. Be-
yond branch prediction, perceptron learning has been applied
to last-level cache reuse prediction [4, 5]. In this paper, we
apply it to prefetch filtering.

3. PREFETCHING ENHANCEMENTS
It is beneficial to allow a prefetcher like SPP to speculate

as deeply as possible. Often, some useful prefetches are gen-
erated long after the confidence of the prefetcher has fallen
below the point at which prefetcher inaccuracy would lead to
performance degradation (i.e. coverage continues increasing
far beyond the point at which accuracy drops). In order to al-
low deep speculation in the prefetcher, inaccurate prefetches
must be filtered out. We propose to leverage perceptron-based
learning as a mechanism to differentiate between potentially
useful deeply speculated prefetches and likely not-useful ones.
The Perceptron based Prefetch Filter (PPF) is placed between
the prefetcher and the prefetch insertion queue, as illustrated
in Figure 3, to prevent not-useful prefetches from polluting
the higher levels of the memory hierarchy. Perceptron filter
considers a number of features corresponding to a prefetch,
such as the speculation depth, page address and offset, and
uses this information as the inputs to our perceptron-based
filter in order to predict the usefulness of a prefetch.

3.1 Changes made to SPP
We modify the baseline SPP design so as to de-throttle it,

enabling higher coverage, the following changes were made:
Adjusting Aggressiveness Level: The aggressiveness level
was adjusted by tuning down the internal throttling mech-
anism to extreme values to allow all the prefetches to pass
through. Thus, the internal confidence mechanism is no
longer used to make prefetch or fill-level decisions.
Adding Prefetch and Reject Filters: In our proposed ap-
proach, we need to reindex the perceptron tables (explained in

2



section 3.2) for training when the feedback from the prefetch
is available. To do that, we added two 1024-entry filters that
hold the data required to index these tables. Depending on
the decision of the perceptron (prefetch vs reject), the data is
stored in the respective filters.
Exporting data between SPP and Perceptron: Perceptron
learning uses the metadata associated with a prefetch sug-
gestion as the perceptron features. Some of the features we
developed use information derived directly from program
execution. Beyond that, SPP also conveys useful information
like lookahead depth, signature, and the confidence counter
to the perceptron filter.

3.2 The Perceptron Filter

Sum

Thresholding

Prefetch cache line suggested 
by the base prefetcher

Sent to L2C / LLC for 
Prefetch

Prefetch Table

Index 1 ….. Index N

1. Inferencing
2. Recording

Perceptron Filter

FEAT 1

W11

W21

W31

W41

WI1

FEAT 2

W12

W22

WJ2

FEAT N

W1N

W2N

W3N

WKN

Previous L2C Prefetch

Demand Hit / Eviction

3. Retrieving

4. Training

FEAT 1

W11

W21

W31

W41

WI1

FEAT 2

W12

W22

WJ2

FEAT N

W1N

W2N

W3N

WKN

Re-access same weights

(a) Prediction

(b) Update

Prefetch Table

Index 1 ….. Index N

Figure 4: PPF Data Path and Operation

Figure 4 shows the microarchitecture of PPF, as well as
the steps required to filter out not-useful prefetches. The
perceptron filter is organized as a set of tables, where each
entry in the tables holds a weight. Each table is indexed using
a different number of bits from the corresponding feature.
Each weight is a 5-bit saturating counter ranging from -16 to
+15.
Inferencing and Data Recording: SPP is triggered on every
demand access to the L2 Cache. The suggested prefetch can-
didates from SPP are fed to the perceptron filter to determine
their usefulness and fill-level. This is done by thresholding
the perceptron dot-product sum against two different values:
τhi and τlo. Depending on the outcome of the perceptron, the
feature values are recorded in one of the two filters introduced
above.
Data Retrieval and Training: PPF training is triggered
whenever a prefetched block leads to a demand hit or a cache
eviction. A valid entry in one of the tables means that the
current memory access was a prefetch candidate in the past.
The retrieved feature values are used to index the tables of
weights. A uniform perceptron update rule is followed. If

the prediction was correct, i.e. if a prefetched cache line led
to a demand hit, and the perceptron sum lies within a prede-
fined threshold, weights are updated in the correct direction.
If the prediction was incorrect, i.e. a prefetched cache line
was evicted without being used or a rejected prefetch led to
a demand access, the weights are updated in the opposite
direction.

Note: More details about PPF working and implementa-
tion can be found in the paper Perceptron-based Prefetch
Filtering [6].

3.3 Other Optimizations
Resource Division Across Pages: For prefetch friendly ap-
plications, an aggressive lookahead prefetcher can go deep
down the speculation path. This process takes up valuable
resources in the system’s Prefetch Queue (PQ), blocking any
prefetch attempts from subsequent pages and leading to a
timing disparity between demand accesses interleaved across
pages. To avoid that, our prefetcher maintains a count of
distinct pages accessed in the last eight demand accesses and
divides the PQ resources across those many pages by limiting
the maximum number of prefetches in a given page.

4. PREFETCHER CONFIGURATIONS
This section describes the approach in putting together all

the prefetching components across the cache hierarchies. An
overview of various prefetching components with respect to
the cache hierarchy can be seen in Figure 3

4.1 Single-Core Configuration
1st Level Data Cache: For the L1D Cache we are using
a modified version of the next-N-line prefetcher [7]. The
basic next line prefetcher is modified to have a small table
containing the last block accessed by a page. The table is
indexed by hashing the page number of an access. When
an access occurs, the current block access and the previous
access are compared. If the delta between accesses is +1,
then a score table is indexed by the page number and its
value increased. If the delta is not +1, it is decreased. When
prefetching, the score table is accessed and if the value is
above a specified threshold, the next cache line after the
access is prefetched. This throttling allows for the prefetcher
to be aware if the page is susceptible to multiple +1 deltas,
usually consecutively. If the page does not benefit from next
line prefetching, the prefetcher is turned off so that it does
not risk polluting the L1D and wrongfully evicting data that
is more beneficial to performance.

The prefetcher continues to prefetch the next N consecutive
lines of that page. N is obtained dynamically by sharing
the Prefetch Queue (PQ) resources over consecutively active
pages, as explained in Section 3.3 All the prefetch suggestions
coming from the L1D prefetcher are placed in the L1D Cache.
2nd Level Cache: For the L2C, we are using the enhanced
SPP+PPF approach described in Section 3. Prefetches origi-
nating from the L2C can be placed in L2C or LLC, depending
on the confidence estimate given by the perceptron sum.
Last Level Cache: The LLC prefetcher is the basic next-
line prefetcher and does not incur any storage overhead. The
prefetcher gets triggered on demand accesses and the prefetch
accesses originating from the L1 prefetcher.

3



Figure 5: Single Core Performance

Structure Entry Components Total
L1D Prefetcher

Throttler 1024 Tag (7 bits ) 12288
Score (5 bits) bits

Pages Accessed 8 Page number (52 bits) 416 bits
Overall L1D: 12,704 bits = 1.55 KBs

L2C Prefetcher

256

Valid (1 bit)
Tag (16 bits) 11008Signature Table Last Offset (6 bits) bitsSignature (12 bits)
LRU (6 bits)

2048
Csig (4 bits) 98304Pattern Table Cdelta (4*4 bits) bitsDelta (4*7 bits)

Perceptron
4096*4

5 bits 113280
Weights

2048*2
bits1024*2

128*1
Prefetch 1024 85 bits 87040

Table bits
Reject 1024 84 bits 86016
Table bits

Global
8

Signature (12 bits)

264 bitsHistory Confidence (8 bits)

Register Last Offset (6 bits)
Delta (7 bits)

Accuracy 1 Ctotal 10 bits
Counters 1 Cuse f ul 10 bits

Global PC PC1 (12 bits)

Trackers 3 PC2 (12 bits) 36 bits
PC3 (12 bits)

Pages Accessed 8 Page number (52 bits) 416 bits
Overall L2C: 396,384 bits = 48.39 KBs

Total: 409,088 bits = 49.94 KBs

Table 1: Single-core Prefetcher Hardware

Single-Core Complexity: Table 1 shows a detailed analysis
of the hardware overhead required to implement the three
prefetchers. It is well within the championship budget of
64KB. In terms of L2C prefetcher’s logical complexity, SPP
is a cascade of three tables, with the output of one indexing
into the next. Constructing the signature only requires simple
operations like shifting and XOR. PPF requires parallel index-
ing into nine different tables and adding nine 5-bit integers,
which is well within the complexity of currently implemented
perceptron-based branch predictors. Weight updates are done
only in steps of +1 or -1.

4.2 Multi-Core Configuration
When in a multi-core configuration, we disable the L1D

Prefetcher, keep the same L2C Prefetcher and switch the
LLC prefetcher altogether to SPP, without the enhanced PPF
components. We do this by leveraging the information from
NUM_CPUS parameter. We observed that the efficient fil-
tering mechanism in PPF helps avoid pollution in the shared

LLC and a further attempt to do aggressive prefetching leads
to performance degradation. Hence we re-tune SPP’s thresh-
olds towards the safer side and this helps further boost the
overall performance.
Multi-Core Complexity: Beside the single-core L2C prefetcher
complexity, LLC SPP adds an overhead of 14.44 KBs per
core, making a total of 62.83 KBs per core, which is within
the budget allowed by the championship.

5. RESULTS
We test our implementation in the guidelines of the cham-

pionship, using the memory intensive simpoints from SPEC
2017 traces. Figure 5 shows the single-core speedup obtained
by our approach on the traces provided, along with the the
geomean speedup. For reference, we’ve compared our results
with the L2C only BOP [8], which was the winner of the 2nd
DPC. Our prefetchers yield a speedup of 40.4% and 20.3%
on single-core and multi-core systems respectively. This is
12% and 5.2% above BOP.

6. REFERENCES
[1] J. Kim, S. H. Pugsley, P. V. Gratz, A. L. N. Reddy, C. Wilkerson, and

Z. Chishti, “Path confidence based lookahead prefetching,” in 2016
49th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), pp. 1–12, Oct 2016.

[2] D. A. Jiménez and C. Lin, “Dynamic branch prediction with
perceptrons,” in Proceedings of the 7th International Symposium on
High Performance Computer Architecture (HPCA-7), pp. 197–206,
2001.

[3] D. Tarjan and K. Skadron, “Merging path and gshare indexing in
perceptron branch prediction,” ACM Trans. Archit. Code Optim., vol. 2,
pp. 280–300, Sept. 2005.

[4] E. Teran, Z. Wang, and D. A. Jiménez, “Perceptron learning for reuse
prediction,” in The 49th Annual IEEE/ACM International Symposium
on Microarchitecture, MICRO-49, (Piscataway, NJ, USA),
pp. 2:1–2:12, IEEE Press, 2016.

[5] D. A. Jiménez and E. Teran, “Multiperspective reuse prediction,” in
Proceedings of the 50th Annual IEEE/ACM International Symposium
on Microarchitecture, MICRO-50 ’17, (New York, NY, USA),
pp. 436–448, ACM, 2017.

[6] E. Bhatia, G. Chacon, E. Teran, S. Pugsley, P. Gratz, and D. A. Jiménez,
“Perceptron-based prefetch filtering,” in 46th ACM/IEEE Annual
International Symposium on Computer Architecture, ISCA 2019,
Phoenix, AZ, USA, June 1-6, 2019 (to appear), 2019.

[7] A. J. Smith, “Sequential program prefetching in memory hierarchies,”
Computer, vol. 11, pp. 7–21, Dec 1978.

[8] P. Michaud, “Best-offset hardware prefetching,” in 2016 IEEE
International Symposium on High Performance Computer Architecture
(HPCA), pp. 469–480, March 2016.

4


	Introduction
	Background
	Underlying prefetcher
	Perceptron Learning

	Prefetching Enhancements
	Changes made to SPP
	The Perceptron Filter
	Other Optimizations

	Prefetcher Configurations
	Single-Core Configuration
	Multi-Core Configuration

	Results
	References

